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1. INTRODUCTION

In the study of Mechanics, when one analyzes how small displacements from an equilibrium state

evolve in time one is led to the familiar equations of motion

M (t) + C (t) + K q(t) = f(t)1.1)

where M, C, and K are, respectively, the n xn mass, damping, and stiffness matrices and 4(t), u(t), and

q(t) are the n xl acceleration, velocity, and displacement vectors.

For many solid structures attached to the earth the damping coefficients are small compared with

those of mass and stiffness. For structures in space damping plays a bigger role and the undamped model

may not be a good approximation. To understand the response of the system to a variety of external

forces f(t) it is still useful to know the system's dominant natural modes of vibration. This leads to the

quadratic eigenvalue problem

( X? M + X5 C+K)wi =0 i = L... .2n (1.2)

In general X. will be complex and the associated modal shapes are given by the real and imaginary parts

of wi. In the problems we consider M, C, K are real, symmetric, and positive definite.

Our paper has several goals. In Section 2 we make a plea for keeping symmetry explicit in the

reduction to linear form even though the resulting pencil (or pair of matrices) is not definite. We are cer-

tainly not the first to make this suggestion. In Section 3 we show how to make a complex shift of origin

and yet keep the eigenvalue algorithm confined to real arithmetic. This idea appears not to have been

used before. Sections 4 and 5 are theoretical, showing important connections but do not contain new

results. After that we describe an implementation of a Lanczos algorithm for symmetric indefinite pen-

cils. It is designed to exploit any small bandwidth in M, C, K. We describe how selective orthogonaliza-

tion can be carried over from the definite case (Section 6), the numerical dangers that beset the algorithm

in our case (Section 7), the solution of the reduced eigenvalue problem (Section 8), and how to compute

accurate error estimates at very low cost at any step of the algorithm (Section 9). Finally, some numerical

results and comparisons make up Section 10.

We mention here that certain problems need more study. (1) When M is singular, or nearly so, the

computed Lanczos vectors can acquire large components in M's null space without the algorithm being

able to detect that this is happening. We have a remedy but do not know how completely it cures the

problem. (2) The efficient solution of the reduced eigenvalue problem is an interesting challenge. How-

ever, in the context of the whole algorithm, it is satisfactory to employ a standard, robust algorithm that

does not exploit all the features of the reduced problem. A Lanczos program similar to ours has been

developed independently (see [Nour-Omid & Regelbrugge, 19881) and used effectively to solve the
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equations of motion (1. 1) directly without computing eigensolutions.

We follow standard notational conventions in the field of matrix computations. In particular, capital

letters denote matrices, small Roman letters denote- column vectors, and small Greek letters denote

scalars. Also v' denotes the transpose of v and o denotes the conjugate of a complex number a. Unless

the contrary is indicated 1lx11 denotes the Euclidean norm of x, IIBI1 denotes the spectral norm of B.

2. REDUCTION TO LINEAR FORM

There are several ways of rewriting (1.2) as a linear eigenvalue problem. When K and M are posi-

tive definite then 0 is not an eigenvalue and one reduction is

[C M] { wi} _.L[- K  0 J {f wi}{_=f0} (2.1)

Another is

[-C ]-M w } K 0 {I ={0} (2.2)

The difference between (2.1) and (2.2) may strike the readers as frivolous. But the implications of this

change go far. The reason that the distinction between (2.1) and (2.2) seems negligible is that, at the next

step, when these generalized problems are reduced to standard form both (2.1) and (2.2) produce the same

result since

M] (2.3)0 M M 0 0 MM 023

This is a nonsymmetric matrix as we would expect from the presence of complex eigenvalues.

Of course the reduction can be made by using the Cholesky factorizations

K = LK Lk, M=LML'

to produce first

r r L -1 C L -4 L j i' L M 1L4' - oJ L 101 'w (2.4)

and then, the standard form

L' L- 0 Xi 0 Xi{Lk wi} } (2.5)
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We suggest that this reduction to standard form, either to (2.3) or (2.5), is a tactical error.

In order to explain our view the following standard terminology will be needed. A symmetric

matrix is indefinite if it has eigenvalues of both signs.

Definition 1. Let Y E R" x be symmetric but indefinite. The bilinear form defined by

(U, v )Y:=v Y u

is called a pseudo (or indefinite or improper) inner product. It obeys all the axioms of an inner pro-

duct except positivity.

Definition 2. Let F e R " , Ye IR x" , with Y symmetric.

F is symmetric with respect to Y, if

FY=(YF)'=YF,

or, equivalently, if

(u, F v )y (F u, v )y

for all u E R", v e R'.

In some contexts one says that F is self-adjoint in Y's (pseudo) inner product.

CAP

The trouble with (2.2) and (2.3) is that neither of them reminds us that

K- C -K-

Aooession F or

is symmetric with respect to both NTIS :tA&I
DTIC TAB o'

M 0 n 0 MJust ir cat to

Similarly the first matrix in (2.5) is symmetric with respect to By
Distributio n/ _

-101Avalii~.'tY Codes
0 1~U and/or

]ist SP

but not with respect to

We see no gain in efficiency in going all the way to (2.5) in the reduction but circumstances may change.
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In brief, (2.1) suggests the relevant symmetries but (2.2) does not. (2.1) is a special case of the

problem

(A- ± B) z =0

where A and B are symmetric but indefinite. A matrix pair (A, B) is sometimes called a matrix pencil.

See [Gantmacher, 1959] for example. In our case we have a symmetric indefinite pencil. Excellent refer-

ences for further study of these pencils see [Gohberg, Lancaster, and Rodman, 1983 and 1986].

Lemma. B- 1 A is symmetric with respect to both A and B. A B- 1 is symmetric with respect to

both A- ' and B- .

Proof: For all u, v in R",

(u, B-' A V)A-V A B-1 A u-(B- A U, V)A

(u, B-1 A v)B=v Au=(B-1 Au, v)B

The second result can be obtained similarly. 0

It turns out that the Lanczos algorithm may be invoked with the operator B- 1 A using a pseudo inner

product defined by A or B. The three term recurrence still holds in this more general situation. There is

more on the Lanczos algorithm in Section 4.

Subspace Iteration [Bathe and Wilson, 1976] or [Rutishauser. 1970] (also called the method of

Simultaneous Iterations) also extends formally to the indefinite case but the Rayleigh Ritz approximations

produced at each step are no longer optimal in any meaningful sense. We have made the necessary

modification to our standard SI program and use it as a simple rival to our Lanczos procedure.

In contrast to the definite case both algorithms can break down or become unstable when close to

breakdown. Alarming things can happen with an indefinite (or improper) inner product : a set of orthogo-

nal vectors might be linearly dependent. The geometry associated with such an improper inner product is

the geometry of relativity theory.

Next we wish to point out that it is possible to work with A B- 1 instead of B- 1 A but we see no

advantage to this formulation in our problem. Since A B- 1 is symmetric with respect to B- 1 and A- ' we

must work with these pseudo inner products. Now A- ' is complicated but when B = diag (-K, M) then

we can form the Cholesky factorization of M and K once for all. After that the computation of B- 1 v

costs no more than the computation of B v. The need for shifts of origin (see next section) suggests the

use of an operator H- 1 A and the pseudo inner product defined by A. Here H may be B or B - 7 A or

Re (B - o A) or Im (B - a A).
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Both forms (2.1) and (2.2) are well known. In a recent paper [Borri & Mantegazza 19771 form (2.1)

is explicitly proposed when M, C, and K are all symmetric. However, no mention is made of the fact that

the Rayleigh quotients used in that paper may overflow or yield 0 / 0. A conventional alternative to the

pseudo-symmetric form (2.1) or (2.4) is to apply the two sided Lanczos algorithm to the matrix in (2.3) or

(2.5). In Section 4 we show the connection between these two approaches.

We recall that the attraction of the Lanczos algorithm is that a few of the largest eigenvalues may be

found by stopping the algorithm long before the full n steps. It is usual practice to give the algorithm an

operator such as H- 1 A whose largest eigenvalues are shifted reciprocals of the ones we really want. We

can expect to find the p largest eigenvalues within max [p+8, 2p) steps. See Section 10 for examples.

By reducing the n xn quadratic problem to linear form the dimension of the Lanczos vectors becomes 2n.

However the cost of implementing the Lanczos algorithm is only doubled (approximately) because the

structure of the matrices A and B may be exploited. The algorithm and operation counts are given in Fig-

ure 1.

Note that we could have used the algorithm for the operator H- 1 A using the pseudo-inner product

defined by H. The variation alters the subroutines supplied to the Lanczos algorithm, not the program

itself. There may be advantages to the H inner product but we have not studied the matter since H may

be complicated.

3. ORIGIN SMFrS

There are applications (e.g. space structures) in which the stiffness matrix K is singular. This

makes B = diag (-K, M) singular too. In this situation, we need to solve a shifted problem

(X-o) A z = (B - Y A) z

where a * 0 is a real shift. To preserve the block diagonal form, we note that the B - a A can be factored

into

['--7I] [(-K--C--M)oM ] [:.I] (3.1)

We need to factor only M and the shifted stiffness matrix K + a C + o2 M, which has the same banded

structure as K in order to solve (B - a A)u ='Av for u given v. Thus we may solve

(B - aA)-Az - ) z to obtain eigenvalues close to 7. This is standard practice.

In several applications the user would like to explore part of the complex plane and see how certain

eigenvalues vary with changes in the matrix elements. Unfortunately, if a is complex then B - a A is not
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real and so (B - a A)-' A is not a valid operator for our Lanczos algorithm.

A way out of this quandary was proposed in [Parlett and Saad, 1987]. The operator given to the

Lanczos algorithm is either

Re[(B-oA)=f]A or Im[(B-oA)"'JA . (3.2)

Here Re G - (G + G;), Im G :- (G - G), and G is the conjugate of G. Both operators are real
2 i

and have complex conjugate pairs of eigenvalues.

Let , z be an eigenpair of (B, A), i.e. they satisfy X A z = B z. By subtracting a A z and o A z

from each side and inverting one finds that

1 _1 1 )
Re [ (B - o A) z=-(- + ---- z , (3.3a)

2 %--a -

Im [ (B - ci A) - 1 ] A z = -- (---L - --- ) z (3.3b)

To recover X from the computed eigenvalues of either of these operators requires merely solving a qua-

dratic equation for the root that is closer to a. However X may be recovered directly, with extra work,

from the Rayleigh quotient

)L=I Bz/1 Az.

In order to exploit narrow bandwidth it is convenient to use complex arithmetic in (3.1) to factor

B - a A and thus to solve, for w e V, (B - Y A) w = A v for any given v E IR". However, the subrou-

tine returns either Re w or Im w and so there is no complex aritlunetic in the Lanczos algorithm. The

major computation is in factoring K + a C + a2 M. This is done once. Note that the pseudo-inner product

is defined by A and is independent of a.

Both the real and imaginary part of (B - a A)-' provide good enhancement of the eigenvalues close

to a. It is shown in [Parlett and Saad, 1987] that the imaginary part suppresses the unwanted eigenvalues

far from a more strongly than does the real part. More experience is needed on this aspect of the shift.

4. CONNECTION BETWEEN LANCZOS ALGORITHMS

The original formulations given by Lanczos (in [Lanczos, 1950]) considered the standard symmetric

eigenvalue problem A z = X z, i. e. B = I. The Lanczos vectors (qk ) ".1 for symmetric n xn A obey the

well-known 3-term recurrence relation

A % -- Pt_1 + a* ok + Ok~lqt+l k =l1 .... n (4.1)
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with qo -0. The {q, ),.1 form an orthonormal set. The attractive feature of the Lanczos algorithm for

the generalized problem A - X B, where B is symmetric, positive definite is that, as in (4.1)

B-1 A qk = P.kqk- + akqk + Pk+lqk+!

The Lanczos vectors are still orthonormal but in the inner product defined by B. Usually they will not be

orthogonal in the ordinary Euclidean sense.

In general, for a nonsymmetric matrix F (we rename B-1 A as F) there is a two-sided generalization
(also given by Lanczos) in which two sets { Pl.... p. ) and { ql,.... q6 } are generated. Moreover, if

pk qk = 1, then

Fo =k Ok q-! + ckqk + yk+lt+l,

Ft Pk =k P-1 + (XkPk + Ik+1Pk+1- (4.2)

and the { Pk }, I j are biorthogonal,

p:q,=O, i.t

This algorithm will break down when pk q, = 0 with Pk * 0, q, * 0. We can expect inaccuracy when

Pk qk is very small. There is more on this point in Section 5.

For theoretical purposes it is convenient to normalize the Lanczos vectors by

pk qk = I1 11 = 11% 11 (4.3)

provided breakdown does not occur. However, in practice, it is better to keep

1Ipk 11 II II = I

and define

(Ok k' qk (4.4)

If ok is tiny ( < 10-S or E1/2) then the ( Pk ) and { ) I are nearly linearly dependent and consequently

make bad bases in which to represent the solutions. The normalization (4.3) conceals any deterioration in

the quality of the basis f q,..., q,, ). The normalization (4.4) makes the three term recurrence slightly

more complicated. Define

2 a2 3

,1= =P' FQ,,

1n-I oX-iT
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Q. = diag (wo .. a)= P" .,

QR = (qj, . ),

P. =(P .... P.) (4.5)

then, in matrix form, the three term recurrence is
FQR -Q OR l - 0

RP' F -J. Q.-' P1 = 0. (4.6)

Note that when F = A = A! and B = I then P, Q, "= I. and J, T, T.

In our pseudo-symmetric eigenvalue problem A - XB we face the same possibility as in (4.2) that

the Lanczos process may break down and may be unstable when close to breakdown. To distinguish this

algorithm from the two-sided algorithm given by (4.5) and (4.6) we label the Lanczos vectors in our algo-

rithm as qh.... q,,. It is important to know when this instability occurs and so we prefer to normalize

the 4 to satisfy

IIC, II-- , for all k, (4.7)

and then define

Gh = (4k I4A

A tiny value of Wk is a sign of danger. The three term recurrence, in matrix form, is

B-' A 0. -0. C. 1 T =0,

tR=QAB-'AQ4 (4.8)

95. = 0 ' A Q. .

provided that breakdown does not occur. Note that T. is symmetric. Equating the k th column on each

side of (4.8) yields the three term recurrence for our pseudo-symmetric formulation

B-1 A 4A = (4k/o,=) 4k-I + (CI*/k) 4k + (k+,/0)k+,) (h+I, k < n. (4.9)

This equation shows the possible danger of small values among the (),).

The goal of the preceding discussion was to prepare for the interesting, but natural, result that our

pseudo-symmetric procedure (4.8) & (4.9) is a disguised form of the two-sided algorithm (4.6). By

choosing p, appropriately it turns out that pk =A q,, for all k, and so there is no need to hold the pk

explicitly in memory.
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Theorem. Suppose that A and B are real and symmetric. Suppose that no breakdown occurs. Let

the two-sided Lanczos algorithm in (4.6) be applied with operator B-1 A (starting with P, and q1 ) to pro-

duce two biorthogonal sequences {pk }*,,, {qt lk.1. Let the pseudo-symmetric Lanczos procedure in

(4.9) be applied with B-' A (starting with 4h) with pseudo-inner product defined by A to produce {4 }=.

If q1 = q, and p, = A q, / IIA qIII then 4h = % and Pk = A % / IIA qkII, k = 2 .. n.

Proof : We use induction and let u I I v mean that u is a nonzero multiple of v. Put k = 1 in (4.9) and

equate column 1 on each side of (4.6) to find

42 1 1S-' A 41 - 4h (61/o0,

q2 I I B- I A q, - q, (a,/o) ,

P2 I I A B - p -p(,1 1 )•

By choice 41 = q, and A q, = P, IIA qI11, so

1:-(1, , =)A (ql, q)A= qj Pl IA qll = O1 IA qll,

al:= (, B- A l)A = (q, B- A ql)A = p' B- A q IlA qlll = aI IA qll.

Thus a1Io/ = a1 /cow and hence 42 = q2 and P2 I I Aq / IIA qIIl. SO P2 = A q2 / IIA q211.

The induction assumption is that the theorem holds for k = j - 1 and j. Put k = j in (4.9) and

equate column j on each side of (4.6) to find

4,I I B-' A, -4j (6z/tj)-(Oi - (0,1/,.- 1),

qj+1 II B-1 Aq, -qj (aj/oj)-qj_j (¥,/o~._.)

Pj~j I I A B- P - Pj (aj/cj)-p (p /ro,.).

Use the induction assumption to verify that

C%-1 c := (j-,, 4j-=)A = (qj-1, qj-)A =qj-1 pj-, IIA qj%_11 = w j - IIA qj-111

a fi (4j-,, B-' A 4j)A =f (qj-l, B-I A qj)A =f Pj'-l B-' A qj IIA %_-111 =j II A qj_: ,

jz, := (! -4j)A =i (q , q)A = qj Pj H A qj II =i o I A qj I qI,

aj := (4lj, B-I A 4j)A =fi(qj, B- 1 A qj)A-- pj B- 1 A qj IIA qj 11= aj IIA qjl 11

yij := P-i B -' A qj = IIA qJlll q -! A B- A qj = IIA %q IA IIA % 13

Ti q,... 111 q ~IIA q.,II q, 1 AB I-IA qjII

using these relations we verify that

=j+l = qj l
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Pj~j II A qj l

Thus, pj+l = A qj+i / IA qj+11 and the result holds for k =j + 1. By the principle of induction, if the

algorithms do not break down then the theorem holds for k = 1, 2 ... , n. C

5. MOMENT MATRICES AND HYPERBOLIC PAIRS

The breakdown of the (generalized) form of the Lanczos algorithm may be interpreted as break-

down in the triangular factorization of a certain matrix. This connection is well known (see [House-

holder, 1964] or [Parlett. Taylor, and Liu, 1985]) and gives valuable insight. We review it now. Let

Kj = [q1 , F kq1 , (B-'A)2q 1,...., (B-'Aiql].

This is called a Krylov matrix. When s,. ,essful the Lanczos algorithm constructs a matrix

Qj = [ql,... qj]

of Lanczos vectors which are A-orthogonal, i.e.

Qj A Qj =0 = diagonal.

Moreover Qj and Kj are connected by

K1j=Qj L1

where Lj is an invertible lower triangular matrix. In other words Qj is obtained from Kj by the Gram-

Schmidt process. However, Lanczos found a clever way to find qj without actually invoking Gram-

Schmidt. This result is not obvious; it expresses the fact that B-1 A q, is a linear combination of q,-l,

q,,, and q.+, and from this it can be deduced that for each m = 1, 2 ... j, (B - ' A)' q, is a linear cor-

bination of qj, q 2 ,.... q,,,l only.

In the present context the moment matrix is defined as

Mi = [mai ,

mk = (q', (B-1 A)' +k - 2 q)A = qt A (B-'A)' - 2 q1

A little manipulation shows that

Mj =K A Kj.

Consequently, if the Lanczos process does not breakdown,

M= LjQ'AQjL'=Lj 0, L.

This is the triangular factorization of M,. We do not insist that the diagonal elements of L, be 1.
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Triangular factorization exists if all the leading principal submatrices of Mj are nonsingular (i.e. inverti-

ble). Conversely, if the last diagonal element of 0, is the first to vanish then the Lanczos algorithm

breaks down at the end of step j.

Observe that Kj and Qj are each n xj matrices whereas Lj is invertible. Thus Kj has full rank if

and only if Qj has full rank. It is desirable (though not essential) that Qj have full rank.

Lemma. Let K, Qj, M, and A be as defined above. If Kj has full rank and A is symmetric, posi-

tive definite then so is M, and the factorization L, Qj L! exists with fQ, positive definite.

Proof : For any v e]Rj,

V M j v=v' KAK, v=w Aw>,O

unless w = 0. If Kj has full rank then w = 0 implies v = 0. Hence Mj is positive definite. The leading

principal submatrices of a positive definite matrix are positive definite and thus Mj permits a triangular

factorization. [I

When A is indefinite then there exist vectors w * 0 such that v/ A w S 0 and, except in trivial cases,

there will be starting vectors q, and j-vectors v such that the A-norm of Kj v vanishes for large enough

J.

Definition: v is isotropic if V A v = (v, V)A = 0.

It is helpful to regard the occurrence of breakdown (i.e. when qj is isotropic) not as disaster but as a

reminder that A is indefinite. There is a natural way to proceed. The idea goes back to Lagrange but was

put to use by D. G. Luenberger to extend the conjugate gradient algorithm [Luenberger, 1969] and by

[Bunch, Kauffman, and Parlett. 1976] to stablize triangular factorization.

By a simple rotation of coordinates the hyperbola x 2 _ 2= I may be written as 4 1 = 2. In our con-

text the idea is to modify our generalized Lanczos algorithm as follows. If qj is an isotropic vector then

choose the value of aj, in (4.1) or (4.9) so that qj~l is also isotropic. Provided that qj A qj, 1 is not too

small these Lanczos vectors stll provide a good basis. They are no longer A-orthogonal. Nevertheless

Q+ A Qj+, is block diagonal with 2x2 diagonal blocks of the form

0 Wj'j +I

(0jj +1 0

whenever the modification is used. We follow Luenberger [Luenberger, 1969] in calling q, qj+1 a

hyperbolic pair.
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In practice there is no need to wait until qj A % is negligible before switching to a hyperbolic pair

for qj and q, 1. By forsaking strict A-orthogonality we gain a better conditioned basis. Similar thinking

for the two sided algorithm yields the Look Ahead algorithm [Parlett, Taylor, and Liu, 1985] but the pro-

cedure is rather complicated. Our experience is limited but the only breakdowns we have encountered

were produced deliberately.

6. LOSS OF ORTHOGONALITY

It is well known that the three term recurrence does not produce A-orthogonal Lanczos vectors in

finite precision arithmetic. It is the convergence of the algorithm that provokes this deterioration not can-

cellation. There are three ways to respond to the situation.

1. Do nothing.

This technique causes Lanczos sequences to be 2 or 3 times larger than necessary. It is only of

interest when the whole spectrum is wanted. The loss of orthogonality does not prevent the calculation of

fully accurate eigenvalues and eigenvectors. It merely slows down the process.

2. Full reorthogonalization at each step.

Here the vector computed by the three term recurrence is explicitly orthogonalized against all

preceding Lanczos vectors. This requires keeping the auxiliary vectors tk (= A qk) in fast memory

(unless virtual memory is in use) and using them every step. However for short runs of 20 or 30 Lanczos

steps the cost is not excessive.

3. Selective reorthogonalization.

Most of the benefits derived from a set of Lanczos vectors that is A-orthogonal to working accuracy

are also enjoyed when the vectors are merely semi-orthogonal.

Definition. Let e be the roundoff unit. Then two vectors u, v are semi-orthogonal with respect to A

if

Iu' A vI < 4 Illull . lvll* hAil

Two techniques have been proposed for maintaining semi-orthogonality. In [Parlett and Scott, 1979]

it is shown that computed vectors tend to be pulled towards converged Ritz vectors. Hence it helps to

orthogonalize the current Lanczos vectors against such vectors from time to time. This remedy only

addresses one mechanism that provokes orthogonality loss.
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In (Simon, 1984] a recurrence was found that governs the inner products among the Lanczos vectors

themselves. This recurrence permits an accurate estimate of the orthogonality loss in the current Lanczos

vector to be computed at each step at a cost proportional to the number of Lanczos steps taken. It is then

easy to orthogonalize the new vector against all the old ones when, and only when, necessary in order to

maintain semi-orthogonality.

The recurrence extends easily to cover A-orthogonality and our algorithm incorporates this form of

selective orthogonalization. As a rule of thumb selective orthogonalization has a cost about 1/3 the cost

of full reorthogonalization. For large problems on some computer systems the I/O costs of reorthogonali-

zation dominate the arithmetic costs.

A full discussion of semi-orthogonality and how to maintain it is given in [Parlett, Nour-Omid, and

Liu, 1988].

7. DANGERS

The previous sections show that the symmetric quadratic eigenvalue problem

( X2 M+ XC + K) u =0 (5.1)

may be reduced to the simpler form

(T- X 1 Q) u = 0 (5.2)

where T is real symmetric and tridiagonal and 11 is real diagonal (or block diagonal).

Any difficulties inherent in the original problem must be inherited by the reduced problem. Impor-

tant features are :

(1) complex eigenvalues are present and are wanted.

(2) Sometimes (depending on C) an eigenvalues X may be degenerate; it may belong to a nondiagonal

Jordan block of 1 T. This can happen when X is a double real eigenvalue (the coalescence of a

conjugate pair of eigenvalues) or when both . and are double eigenvalues.

We consider (1). Since T and Q are real it is desirable to postpone the use of complex arithmetic.

Indeed if the FIR algorithm [Bunse-Gerstner, 1981; Brebner and Grad, 1982] is used then the pair (T, fl)

is eventually transformed into (T, A) where

A= diag (±l, ±1 ..... 1)

and t is block diagonal with 2x2 and lxI blocks. Each complex conjugate pairs of eigenvalues is found

from a real pencil of the form
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No complex arithmetic is needed in this case but the HR algorithm is not always stable. However there

are alternative techniques for finding some or all of the eigenvalues of (T, £) and exploiting the banded

form. See Section 8.

Thus (1) is not a serious difficulty.

Now consider (2) : degenerate multiple eigenvalues. Theorem 15-2-1 in [Parlett, 1980] states that

any real square matrix may be written in the form B- 1 A where A and B are real symmetric. Conse-

quently a symmetric indefinite pair (A, B) may suffer from highly defective eigenvalues. A simple exam-

ple is 00 ] 0001]
Ola 001

1 aOO 0 010

a000 1000

which is a Jordan block in disguise.

If T has some off diagonal elements that vanish then the reduced eigenvalue problem splits up into

smaller pieces. Each piece consists of a T with all its Pi values nonzero.

Lemma: If no off diagonal entry Pi of T vanishes then to each eigenvalue of T - (X - o)- 1 Q there

corresponds exactly one eigendirection.

Proof: The minor of the (i, j) entry is (PI1N.-.. j-1) 0 0 for all A. and so the rank never drops below j-l.

0

However it is still possible to have eigenvalues of high multiplicity.

This result is to be expected. Whatever the geometric multiplicity of an eigenvalue of A - XB the

Lanczos algorithm can only "see" the projection of the starting vector q, onto the invariant subspace asso-

ciated with the eigenvalue. Thus, in exact arithmetic, it is possible for T - X Q to have generalized eigen-

vectors with lower grades than the true multiplicity of the associated eigenvalues. It is exactly the same

in the truly symmetric case. The Lanczos algorithm cannot "see" geometric multiplicities.

Unfortunately it is the prescence of degenerate eigenvalues that causes breakdown of the HR algo-

rithm.

Example of a multiple eigenvalue:

1 1 ] X[ 0-1



15

has 0 as a double eigenvalue with eigenvector (1, -1)' and any vector other than the eigenvector is a gen-

eralized eigenvector of grade 2. There is no simpler symmetric representation of such an eigenvalue.

We are studying the effect of multiple eigenvalues on the performance of the Lanczos algorithm.

There is another difficulty more insidious than the first two.

(3) Undetected growth of Lanczos vectors in certain directions. The following example was given by Dr.

T. Ericsson [private communication]

Example:

A=diag(1,-l,x,x .... x),

B = diag (-1, x,x ...... x),

q, = (c, a,x, x ...... x)'.

Then (qj. q)A is independent of a and consequently both T and Q will be independent of a. The trouble

is that

z=(l, 1,0'..., 0)

is an eigenvector of B- 1 A with eigenvalue I and (z, Z)A = (z, z)B -0 . Arbitrarily large multiples of z

could be present in the Lanczos vectors (on account of q1 ) and the Lanczos algorithm would be blind to

them. This possibility of undetectable growth ii, certain directions is a generalization of the phenomenon

reported in [ Nour-Omid, Parlett, Ericsson, & Jensen, 1987] where the direction was in the null space of

A. Here it is the isotropic eigenvectors that are invisible.

It remains to be seen whether the practice of keeping all Lanczos vectors with Euclidean length I

will alleviate the problem or merely drive the Lanczos vectors into the space spanned by undetectable

eigenvectors.

8. HOW TO SOLVE T - X Q
(1) Use EISPACK on 17 1 T,. (Subroutines HQR I or HQR2)

The tridiagonal form will be expanded to Hessenberg form by the QR algorithm. Thus no advan-

tage is taken of the compact tridiagonal form. The arithmetic effort is approximately 8j3 to find all the

eigenvalues at step j.

(2) The HR algorithm [Bunse-Gerstner, 1981; Brebner and Grad, 19821.
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Let 832= I0 i 1, i = 1... j, and A =diag(81 .... ). The pencil (T. Q) is equivalent to

(A- ' T A- , i) where I = oi I oi 1, i = 1 ... , j. The HR algorithm is a generalization of the sym-

metric tridiagonal QR algorithm. However hyperbolic rotations of the formLcosh 0 sinhO r sec 0 tan 0
sinhe coshe or tanO sec 0

are used in place of plane rotations whenever the associated diagonal elements of i have opposite signs.

Complex shifts may be used without evoking complex arithmetic in the same way as they are used in the

unsymmetric QR algorithm.

The only weakness is that the HR algorithm can break down fr -ertain shift values and can also be

unstable when the shift is close to breakdown. In addition it will .. A all the eigenvalues at each step.

This is overkill. When the algorithm succeeds it needs approximately 10j2 arithmetic operations for a

j x j pair (T, Ql).
(3) The LR algorithm applied to ';, T/

This is closely related to the HR algorithm. It is efficient, finds all the eigenvalues and can break

down.

(4) ANALYZEJ

This application of Laguerre's algorithm was developed for use with the two-sided Lanczos algo-

rithm. A data structure consisting of some eigenvalues of the pencil (TF,., Qj-j) toger -with their error

estimates is updated to produce some eigenvalues of (Ti, £lj) and their error estimate Fhese estimates

are measures of how close the eigenvalue is to an eigenvalue of the original pair (A, B-aA).

To update one eigenvalue a sequence of Laguerre iterates is computed starting with an old one. The

calculation of the Laguerre iterate takes full advantage of the tridiagonal form but complex arithmetic is

used. The program is still under development. The difficulty is to detect and find new large eigenvalues

that are not close to any at the previous Lanczos step. One remedy is simply to find all eigenvalues of

(Tj, Q ) at each step.

9 ERROR BOUNDS

Let

(Tj -0 ij) s=0 (9.1)

with Ilsil = I, define a typical eigenpair (0, s) of the reduced problem. Let F be the operator given to the

Lanczos algorithm and let F be symmetric with respect to A. After j steps. in exact arithmetic,
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FQj -Qj nj-t Tj =q+, (0,+1 i/o+1)e J (9.2)

The 'Ritz vectors' corresponding to 0 in (9.1) is defined by

y:-Qs . (9.3)

To obtain an error bound for the approximate eigenpair (0, y) one postnultiplies (9.2) by s and uses (9.1)

to obtain

F y - y 0 = qj+1 (03j+1 / orj+) s(j) (9.4)

and

11F y - y 81l = (pjj / oj+) I s(j) 1 (9.5)

since q+111 = 1. Unfortunately, it is not possible to evaluate Ilyll without computing y. Note that

A y = V Qj s but this quantity might be 0 or negative in general.

When A is positive definite then it defines a proper norm on RR via

I lVI1A = (v' A v)1/'

In that case 11qiA -- ", i = 1, . . . , j, and

11F y -y e11A f(0j+1 / '4(0j+1) I SW)I,

"YIA = (s' Q, s) 112 . (9.6)

The following error bound extends well known results for symmetric matrices. Consequently (9.6) yields

error bounds without the need for computing with vectors in R.

Theorem A. If F is symmetric with respect to a symmetric positive definite A then, for any

y e R'"O and Or R, there is an eigenvalue X ofF satisfying

I X -e 1 I IIF y -y OeA / yA

Proof:

1ly11A = II(F - 0)-! (F -0) Y11A S

1I(F - )-1A 11IIF y -y MIA = 1F y -y elA / min, I X - I 1

This result depends strongly on the existence of a full set of A-orthogonal eigenvectors for F and is

not valid, or necessary meaningful, when A is indefinite. Thus we cannot use (9.6) just as it is.

For indefinite A we may invoke the results presented in [Kahan, Parlett, and Jiang, 1982] and adapt

them to our problem. Two residual norms are required. Let
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u:=Fy-y0 , :=i' F-i , (9.7)

wherej' x 0, Ilyl I IlxII= 1. Now we are obliged to work in C' rather than R.

Theorem B. With the notation given above (0, y, j?) is an eigenuiple of F - E for some E satisfy-

ing

IIEII max( full, I1" II ,

Note that Ii Ii I= lvll. In other words, if Hull and IlvIl are both tiny then (0, y,?) are an eigentriple for an

operator almost indistinguishable from the given one.

In our case, if F = B- 1 A then 1P = A B-1 and we have from (9.4),

B- 1 A y -y =qj+l (A+1 / oj+,) s(j)

The second residual is obtained easily by premultiplying by A.

(A B- I) (A y) - (A y) 0 f A qj+j (3j+1 / Oj+,) SUj).

Let

IOU ) =f (1Ps1 / ) I S~j), 1 (9.8)

Then (0, y, A y) is an eigentriple of F - E for some E satisfying

IIEII:5 OQi) m] Il IIA yl+, J (9.9)

4 Illl' IA yl

When the computation has proceeded enough that I O3(j) I is very snall then first order perturbation

theory may be invoked to obtain an accurate error estimate for 0 by regarding F as a change to F - E. If

X is the eigenvalue of F closest to 0 we have, in general,

= lyll l xi !3I' ExI +O(IIEII 2) (9.10)

1I ' xI Ilyll. Ilxil

The first term on the left is independent of E and is the condition number of 0 as an eigenvalue of F - E:

cond() = IlylIxhl/ I Y x 1 (9.11)

We now adapt these results to our problem. Note that

1~ IiQ!Qj S 1!5j IT' sI j1

and

I1y A yll= I' AQJ sl < IV taj si
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Now we can obtain an error bound. As IEI -+ 0, using (9.9)

I X - 01 : cond(0) • IEI + 0 (1Ell 2)

HAlyll'1Ayll 0Q) max 1  1IA qj+111. '+0 (0l 2)

1V A yI Hyll' 1 +  O

!5 RD max{ IlA y l I,IIA qj+j Ily1 ) +0 (hEll 2)a J

< i'F IIAII+0(IE 2)  (9.12)I j s I

The attraction of the last inequality is that the dominant term can be calculated at step j, without recourse

to n-vectors, provided that 1IA1l is provided along with the subroutine that multiplies vectors by A. It is

useful to compare (9.12) with (9.6) and Theorem A.

We use (j) / I V 1j s I as a provisional error estimate. When the required number of Ritz values 0

have passed this test then, and not before, the Ritz vector y may be computed. At that point the more pre-

cise factor

max( IA yIl, 11A qj.111 Ilyll )

may be computed at the cost of forming A y.

At the end of a Lanczos run a multiple of A qjl is available and its Euclidean norm can be com-

puted at the cost one dot product. No extra call on A is necessary for that term.

10. NUMERICAL EXAMPLES

In this section, we use several Test Problems to assess the performance of the proposed algorithm to

extract the eigenpairs of damped dynamic systems. The mass, damping, and stiffness matrices of discre-

tized systems are computed using the FEAP, a Finite Element Analysis Program, [Zienkiewicz 1977,

Chapter 24]. The results reported herein are obtained using a VAX Station fII/PX computer system

using the Ultrix 1.2 operating system and the f77 Fortran compiler. To show the savings resulting from

the use of selective orthogonalization (SRO), we have added a full re-orthogonalization (FRO) option to

our program and present the comparisons in Table 1.

Test problem I The structure is modeled as a cantilever beam with a lumped translational

viscous-damper attached at the tip. The beam is modeled using the elementary beam theory where the

geometrical configuration and physical properties are shown in Figure 2. The consistent mass is used to

define M. The damping matrix C has only one nonzero element representing the magnitude c of the
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lumped damper. The cantilever beam is divided into 20 equal elements and has 40 degrees of freedom.

The order of the associated (A, B) is 80.

We use the Lanczos algorithm with the FRO scheme to solve this problem. Figure 3 summarizes

the results of 8 experiments. Here, we call a Ritz pair good if the pseudo length of its associated residual

vector is less than 10- . This criterion ensures that a good Ritz pair approximates the wanted eigenpair to

high accuracy. From the results in Figure 3, we see that the first few eigenpairs can be extracted at a

fairly low cost compared to the other eigenpairs. This is because the re-orthogonalization cost is greater

at later steps in the Lanczos algorithm.

In this problem, we have run the algorithm to compute all eigenvalues in order to test the robustness

of the computer program developed. However we emphasize that the algorithm is intended only for par-

tial solution of a large eigenproblem. After the 80 steps, we see that the pseudo length of the 81th Lanc-

zos vector is 0.9x10-' 5, which is at the round-off level, implying that the computed Lanczos vectors have

spanned the whole solution space as they should in exact arithmetic. This desirable result will ensure that

all the Ritz pairs obtained from the solution of the reduced tri-diagonal system are good and hence are

accurate eigenpairs of the system.

Test Problem 2 : The system consists of two beams connected by a hinge with a rotational

viscous-damper. The geometrical configuration and physical properties of the system am shown in Fig-

ure 4. The consistent mass matrix is used for M. The damping matrix C has only four nonzero elements,

which are due to the !umped rotational damper. The system is divided into 40 equal elements and has 83

degrees of freedor he associated (A, B) is of order 166. The system is unrestrained and has rigid body

modes, so we app, ift to the (A, B) to compute the eigenpairs of this unrestrained system. The Lanc-

zos algorithm with FRO scheme is used to solve this problem. Figure 5 summarizes the results of 9

experiments. Similar conclusions as in the first test problem can be inferred from Figure 5. The pseudo

length of the 167th Lanczos vector is 0.1xl0-14, which again exhibits the robustness of the computer pro-

gram developed.

In general, the starting vector for the Lanczos algorithm may be chosen arbitrarily. However, if the

starting vector is orthogonal to any of the eigenvectors of (A, B), all the Lanczos vectors will also be

orthogonal to these eigenvectors. In practice, round-off errors eventually will introduce components

along these eigenvectors; however, round-off enters slowly and the convergence z) these eigenvectors is

deferred. Therefore, we need to avoid the possibility of the starting vector being orthogonal to the wanted

eigenvectors of the system. Since the structural system in this test problem is symmetric, there are anti-

symmetric modes as well as symmetric modes. If a symmetric starting vector is used, such as

(1, 1, . 1 ), all the Lanczos vectors will be symmetric. Accordingly, all the anti-symmetric modes of
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the structure will be suppressed by this biased starting vector. To obtain all the required lower modes, we

must avoid choosing either a symmetric or an anti-symmetric starting vector. This is a strong reason for

using a random vector to stan.

Test Problem 3 : This problem is a three dimensional space truss system. There are 44 nodes and

the 4 end nodes are fully restrained, as shown in Figure 6. Thus, there are 120 degrees of freedom and the

associated (A, B) is of order 240. All truss bars have the same density and Young's modulus but different

damping, as shown in Figure 6, resulting in a nonproportionally damped system. We use the Lanczos

algorithm with the FRO scheme to generate 60 Lanczos vectors. We also use the Lanczos algorithm with

the proposed SRO scheme to generate 60 Lanczos vectors. The results from the two schemes are com-

pared in Table 1. The SRO scheme is shown to be adequate to compute the desired solution.

Test Problem 4 : This problem is a larger three dimensional space truss system. There are 300

nodes and the 4 end nodes are fully restrained, as shown in Figure 7. A typical cell is the same as the typ-

ical cell in the test problem 3. There are 888 degrees of freedom and the order of the associated (A, B) is

1776. We use the Lanczos algorithm with the FRO scheme to generate 80 Lanczos vectors. We also use

the Lanczos algorithm with the SRO scheme to generate 80 Lanczos vectors. The results from the two

schemes are also compared in Table 1.

From Table 1, we see that the 60 Ritz pairs obtained provide 28 good eigenpairs for test problem 3

and the 80 Ritz pairs obtained provide 40 good eigenpairs for test problem 4 for both FRO and SRO

cases. That is, approximately two Lanczos vectors, on the average, are required to capture a new eigen-

vector for these two large problems. This implies that the Krylov subspace generated by B-A and a ran-

dom vector is very effective in approximating the least dominant eigenvectors of the damped dynamic

systems considered.

By maintaining semi-orthogonality between the Lanczos vectors with the SRO scheme, the result-

ing Ritz values are as accurate as those obtained with the FRO scheme, as shown in Table 1. But a great

part of the re-orthogonalization steps can be eliminated by using the SRO scheme instead of the FRO

scheme. That is, we can eliminate partial re-orthogonalization effort without sacrificing accuracy of the

final solution when solving X A z = B z with the SRO scheme. This is in agreement with the case of solv-

ing 2 M w = K w by a standard Lanczos algorithm with the SRO scheme.

To assess the efficiency of the Lanczos algorithm, the lower mode solutions of the above four test

problems are also computed using a subspace iteration algorithm. The subspace iteration algorithm

reported in [Chen and Taylor, 19861 is used for this purpose. The subspace dimension is determined by

min(2n, n+8), where n is the number of wanted eigenpairs. Table 2 compares the cost of the Lanczos
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Table I Results of Test Problems 3 and 4

Test Problem 3 Test Problem 4
item problem

FRO SRO FRO SRO
_ = =MOV

number of Lanczos
60 60 80 80

vectors generated

number of
1770 602 3159 1246

re-orthogonalizations

CPU time spent on 40.3 32.6 536.6 473.5
generating Lanczos vectors

CPU time spent on solving 50.8 51.7 100.9 101.2

reduced eigenproblem

total CPU time spent on 113.9 106.7 893.2 830.9
solving the whole problem

number of good 28 28 40 40

Ritz pairs obtained

algorithm with the cost of the subspace iteration algorithm. It is apparent that the Lanczos algorithm is

considerably more efficient than the subspace iteration algorithm for the examples considered. However

more sophisticated versions of subspace iteration might perform somewhat better than ours but not

enough to alter the striking contrasts in Table 2.

Breakdown occurs when oj = 0 for some j. The algorithm provides a bad basis if there are any co,

as small as i = 10- 8. In Figure 8 we plot the sign ((oj) log (0jI against j. The result is typical for our

examples. Quite quickly I ojI drops to 10- 3 but seems to stay at that level without deteriorating for 120

steps. We have no explanation of this phenomenon.

Acknowledgement The authors would like to thank Professor R. L. ylor (Department of Civil

Engineering), Zhishun Liu (Mathematics Department), and Dr. Bahran Not )mid (Lockheed Palo Alto

Research Labs) for valuable discussions.
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Table 2 Results from different algorithms

Lanczos algorithm subspace iteration algorithmTest

No. of good CPU time No. of good CPU timeProblem
Ritz pairs (second) Ritz pairs (second)

1 8 8.5 8 40.2

2 20 41.7 16 214.6

3 28 113.9 24 1012.9

4 40 893.2 40 20992.8
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Figure I Outline of Lanczos inner loop with operator H- 1A

Step I: Operation Count

pick a starting vector r (default is random)
p=Ar 2g(M) + g(C)
solve H q = p v(K)

3, = IqTqI112  2n

q (-- q / P2n

p=Aq 2.i(M) + g(C)
(0 = (qT p)

solve H r = p v(K)
a, = (rT p) 2n
r +- r - q (a1 / co)  2n

oldp = A r 2g(M) + pi(C)

32= IrTrl'f2  2n
o2 = (rT oldp)/I rT rI
store q as q,

Loop : For j = 2,3... Operation Count

oldq ,- q

oldp +--4 p
q = r / 3i 2n

p+- pl /3P 2n

solve H r = p v(K)

(rToldp should equal P3j)
r +- r - oidq (0ij I oi_1)  2n

aEI -- J p 2n
r -- r- q (j /co) 2n

oldp = A r 2g(M) + g(C)

Pi +I= IrT rl 12  2n

coj+1 = (rT oldp)/I rT r I

(repeat to maintain local orthogonality)

store q as qj
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